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ABSTRACT
Mining software repositories to understand and improve soft-
ware development is a common approach in research and
practice. The operational data obtained from these reposi-
tories often do not faithfully represent the intended aspects
of software development and, therefore, may jeopardize the
conclusions derived from it. We propose an approach to
identify problematic values based on the constraints of soft-
ware development and to correct such values using data re-
dundancies. We investigate the approach using issue and
commit data of Mozilla project. In particular, we identi-
fied problematic data in four types of events and found the
fraction of problematic values to exceed 10% and rapidly ris-
ing. We found the corrected values to be 50% closer to the
most accurate estimate of task completion time. Finally, we
found that the models of time until fix changed substantially
when data were corrected, with the corrected data providing
a 20% better fit. We discuss how the approach may be gen-
eralized to other types of operational data to increase fidelity
of software measurement in practice and in research.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—process metrics

General Terms
Measurement, Human Factors

Keywords
data quality, mining software repositories, capacity constraint,
data redundancy
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1. INTRODUCTION
Operational support tools such as issue tracking system

(ITS), version control system (VCS), mailing lists, forums,
and others, are broadly adopted by software projects, and
the operational data produced and consumed by these tools
are crucial for the effective operation of software develop-
ment. For example, Dabbish et al. [6], argue that the data
in the operational systems, such as GitHub, are actively be-
ing used by developers seeking to learn, share code, and for
other key tasks, such as assessing the quality and activity
of software projects. Operational data are also heavily used
in software engineering research, for example, in the field of
mining software repositories and in empirical software engi-
neering. However, as extensively documented in the section
on related work, operational data often do not faithfully rep-
resent the intended aspects of software development and,
therefore, may jeopardize the conclusions derived from it.
Such problematic data affects the conclusions presented in
the academic work, see, e.g., [5, 17] and leads to poor de-
cisions in software development, see, e.g., [26] showing that
Mozilla had over 21% rate of mistaken product assignments
affecting the quality of software and increasing effort and
lead times.

ITS, for example, contains activities of individuals initiat-
ing and completing software project tasks. Virtually every
ITS produces reports on issue resolution. That information
is commonly used in practice to measure progress and select
issues to be worked on. For example, the time until fix is
obtained as the duration of time between issue creation and
resolution date recorded in the ITS. The values recorded in
the ITS, however, tend to strongly vary with the practices
used by projects and individuals. For example, an individual
may write a script to clean ITS by closing a large number of
dormant issues. Such cleanup would produce questionable
fix dates for the issues involved and an exceptionally high
productivity for the individual recorded as the resolver.

In this study we propose a method to identify and correct
such problematic activity data. The first premise of this
study is that physical constraints tend to bound what could
be accomplished by any individual or group over a fixed
period of time. For example, an individual may be able to
complete only a limited number of tasks in any given time
interval. The mere existence of such constraints provides
information that can help us identify erroneous data that
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violate them. The bounds on actor productivity, even if
unknown, can be estimated from the operational data as
described below.

The second premise is that the operational data tend to
be highly redundant with numerous types of events that
could be used to measure the quantity of interest. This
redundancy, as in the information theory, can help us to
correct erroneous data using redundant events.

We, therefore, use the existence of real constraints in soft-
ware development to identify problematic values and to cor-
rect such values by selecting redundant observations that
are more likely to be correct and evaluate our approach on
Mozilla ITS and VCS. In particular, we answer the following
research questions.

RQ1 Is it possible to identify and fix incorrect task comple-
tion dates in software development? We propose to use
a Poisson distribution for individuals’ productivity to
identify likely inaccurate task completion dates based
on issue resolution events and replace such problem-
atic data with redundant events associated with the
same task.

RQ2 What are the specific mechanisms in Mozilla that re-
sult in erroneous issue fix completion dates? Manual
analysis of 200 issues with erroneous dates suggests
three common mechanisms: issues tracked in other
system, long-dormant issues, and issues linked to com-
mitted patches in the VCS tend to be batch-fixed.

RQ3 Can redundancies in operational data provide alterna-
tive task-completion dates? We used alternative ob-
servations of the last comment posted for an issue to
correct the issue resolution dates and authors.

RQ4 Are corrected data more accurate than uncorrected
data? By comparing corrected and uncorrected values
to the last commit date in the VCS we found corrected
values to be 50% more accurate.

RQ5 How redundant are the alternative observations? We
found that when the primary observations are incor-
rect the redundant observations are also more likely
to be incorrect, but, despite that, they provide ample
redundancy with more than 90% of them being non-
problematic.

RQ6 Does the data correction matter in common models of
time until fix? We fit a model commonly found in the
literature and found both its structure and the fit to
change substantially after data correction.

RQ7 Can the approach be generalized to other types of
events and tasks? We identify likely incorrect observa-
tions for four types of events and discuss how to apply
the approach more broadly.

The rest of the paper is organized as follows. We describe
the related work in Section 2. We propose a method to
identify and correct problematic values in Section 3, and
apply the approach to correct issue fix dates in Section 4.
We elaborate on the limitations in Section 5 and discuss how
to generalize the method to other types of operational data
in Section 6.

2. RELATED WORK
As operational data in software development has been in-

creasingly used in research and practice, the concerns about

its accuracy and completeness have been drawing an increas-
ing attention. We consider related work from two aspects:
the extensive use of ITS data to conduct analysis, and re-
search on operational data quality.

Being one of the most important software repositories,
ITS has been widely mined to measure a variety of aspects
in software development. Some of the studies use the num-
ber of issues to measure effort or performance, e.g., using
the number of completed issues to measure team effort [23]
and productivity [8], or using the number of defects fixed to
measure individual performance [7, 26]. Other studies focus
on improving issue resolution practices. For example, min-
ing the history to recommend right issues for people [1, 28],
and comparing the similarity between issue reports to de-
tect duplicate reports [22]. Bug fixing is an important topic
with a substantial amount of literature. Common questions
include: which bugs get fixed [11]? how long it takes to fix
a bug [18]? Guo et al. [11] performed an empirical study
to characterize factors that affect which bugs get fixed in
Windows Vista and Windows 7. Kim et al. [18] studied the
bug-fix time of files in ArgoUML and PostgreSQL by iden-
tifying when bugs are introduced and when they are fixed.
However, as highlighted by this study, the above metrics de-
rived from operational data may suffer from the variation of
how people practice software development.

The problems with operational data have been an increas-
ing focus of attention. For example, Bird et al. [5] studied
the linkages between VCS and ITS and their effects on re-
search result. They investigated historical data from several
software projects and found strong evidence of systematic
bias. The biases found by Bird et al. were later verified
by Thanh et al. [25] for commercial projects. Kim et al.[19]
proposed approaches to deal with the unlinked bugs. They
measured the impact of noise in the data and proposed an
classification algorithm for identifying such noise. Bach-
mann et al. [2] presented tools for reverse-engineering link
data. Their tool enables users to quickly find and examine
relevant changes, and annotate them as desired.

Errors in issue tracking data and their effects on defect
prediction models are investigated in [24] and [12]. Their
findings show that issue report classifications are unreliable.
Due to the noise in issue tracking data, files tend to be
wrongly marked to be error-prone and wrongly predicted
to be error-prone. The noise in code commit data is studied
in, e.g., [13], which investigated whether a single commit in-
cludes several tasks. The use of constraints in commercial
projects was exploited in, for example, [10], where an algo-
rithm that distributes monthly developer effort to individual
tasks is evaluated. The accuracy of a triage activity in ITS
is evaluated in [27]. A method that compares an interme-
diate value of an attribute in ITS to its final value is used
to estimate the odds that a product attribute in the ITS is
incorrect. This method is used to illustrate how the incor-
rect product attribute sends the issue to the wrong product
team leading to wasted effort and issue resolution delays [26].
Various research challenges associated with operational data
are outlined in, for example, [20].

A comprehensive review of outlier detection is presented
by Hodge and Austin [14]. Our approach of using a mix-
ture model is similar to approaches proposed by Yamanishi
et al. [29]. The proposed approach incorporates actual data
generation mechanism in operational data within software
development context to construct more accurate models that
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are based on the understanding of the processes generating
the data. This makes it possible to identify the outliers more
precisely. Furthermore, the outlier detection work typically
assumes that the outliers will be removed from the sample
or accommodated (as in robust statistical methods). Re-
moving or ignoring outliers would, unfortunately, bias the
sample and analysis results as we show in this study. We,
therefore, unlike in the prior work, focus on providing a the-
oretical basis for the methods used to identify and correct
problematic observations in operational data.

3. METHOD
In this section we attempt to answer RQ1 by relying on the

premise that constraints may serve as an information source
and that operational data are highly redundant. While the
idea of using constraints as an information source is very
general, we discuss a specific application of it to identify
problematic values in activity streams represented by differ-
ent types of events in software operational data.

It is common for operational data to include activity streams:
sequences of events that represent actions. Posts to a mail-
ing list, status changes to an issue, or commits to a version
control system represent such event streams. Considering
the complexity of software development process and the vari-
ation of operational support tools, an event in one system
is often associated with events in other systems. For exam-
ple, before closing an issue in ITS, a code commit to resolve
the issue may be submitted in VCS, and the code review
discussion may have been through the mailing list. These
additional events in any of the associated operational sup-
port tools may provide redundant events in case the primary
events are identified as problematic.

In software mining, certain events from activity streams
are used to estimate the task completion time. In cases when
the task represents a nontrivial amount of effort as, for ex-
ample, in code changes or in issue fixes, it is reasonable to
expect that an individual will have a limited capacity to per-
form such tasks and the completion times (if accurate) can
not happen simultaneously or be very close to each other for
two distinct and nontrivial tasks. However, this constraint,
while enforced in the real world, often does not hold in the
operational data because the event timestamps are imper-
fect representations of task completion times. More specifi-
cally, the events representing the task completion date may
contain a date far from the actual task completion date or
the event may be associated with a person who was not in-
volved in the task. Such inaccuracies may jeopardize conclu-
sion drawn from the analysis relying on these events. The
existence of constraints in the physical world can help us
identify such clearly erroneous data by assuming or estimat-
ing productivity bounds of actors. We describe an approach
to determine such constraints below.

Lets denote the operational data event time that we use
to approximate the completion time of task i by actor j as
tij . Assuming the productivity of actor j as pj and the dif-
ficulty of task i as ei we would have the duration between
the events be tij − ti−1,j ≥ ei

pj
if the tasks are done in se-

quence1. The formula shows that the duration between such
events can not approach zero unless the effort for the task

1While the actors in software development tend to engage
in several tasks at a time, this is often caused by the need to
wait on input from other parties or tasks of higher priority
interrupting tasks of lower priority.

approaches zero (ei → 0) or the productivity of the actor
tends to infinity (pj → ∞). For simplicity assuming an ex-
ponential distribution of the task completion inter-arrival
times, the count of events over any specific interval of time
would follow a Poisson distribution with the intensity de-
fined by some function of the ratio ei

pj
for the events occur-

ring during that interval. We, therefore, expect the count
of task completions to follow a Poisson distribution2. If we
observe extreme outliers in these counts, it is reasonable to
suspect that the data may be incorrect. We can use vari-
ous approaches to detect outliers, for example by assuming
that the operational data values come from a mixture distri-
bution: with probability θ the observation is accurate (and
comes from a Poisson distribution parameterized by λgood

) and with 1 − θ the observation is inaccurate (and comes
from a Poisson distribution parameterized by λbad).

To get some idea of what λgood would look, we need to
gauge the distribution of ei

pj
based on the understanding of

real world of actors and their tasks. To gauge the distribu-
tion of θ and λbad, we need to investigate the mechanisms
by which the operational data get corrupted (i.e., do not
reflect the intended task completion times). Such investi-
gation may also reveal more precisely the distributions of
normal and erroneous completion times. If the direct access
to the actors and the ability to understand what happens
in reality is limited, we can still rely on the statistical prop-
erties of the observed distribution and use mixture models
like described above to estimate the probability of erroneous
observation θ and the λgood and λbad.

For simplicity, lets assume that λbad >> λgood
3. The fol-

lowing simple rule can be used to identify erroneous values:

isProblematic(nj) =

{
1 if

∑
i I(tij ∈ d) ≥ cut

0 if
∑

i I(tij ∈ d) < cut
(1)

where
∑

i I(tij ∈ d) is the number of task completions by
developer j during day d and cut is a large enough number to
ensure that non-problematic observations are highly unlikely
to be marked as erroneous.

Unfortunately, once the erroneous data are identified, we
often can not simply discard it: the subsequent analysis fre-
quently assumes that data are complete. For example, if we
want to know the number of issues fixed by each developer
and understand what affects their performance, discarding
problematic data would make the analysis biased. Remov-
ing incorrect data would, for example, affect the estimates
of each developer’s performance by a varying amount.

Once the errors are identified, we, therefore, need to cor-
rect the data. To do that we propose to use redundant ob-
servations from the event streams that are associated with
the same task. As we mentioned above, the redundant ob-
servations could come from other systems used in software
development. The redundant observations should be able
to avoid the problems that the original data have while
being a reasonable approximation of the needed measures.
For example, the redundant observations should provide re-
dundancy, i.e., they should not be uniformly problematic in
cases when the original observations are problematic. The
choice of redundant observations should also be based on the

2Albeit of varying intensity that depends on the difficulty of
the tasks conducted during that interval. See Section 4.3.
3Evaluation described in Section 4.2 suggests this to be a
reasonable assumption.
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understanding of the problems in the original data and of
the nature of the desired measures. It is not unusual to have
numerous redundant observations and measures in software
mining. For example, there are numerous events in ITS,
such as issue status change, comment, report, attachment,
and numerous other events with timestamps. Version con-
trol system and mailing list may contain events associated
with the same issue. Developers may also use other means,
such as twitter, to announce that they have managed to fix
a problem. As with the identification of problematic ob-
servation, we may be able to select redundant observations
based on available data. For example, any measure (defined
as a function of the redundant observations) that well ap-
proximates non-problematic primary observations may be
selected as a suitable alternative.

The identification of erroneous data and the correction
process can be described as follows.

1. Gather events from available sources and link them by
using tasks and individuals involved in these events.

2. Choose the primary event type to represent the desired
task completion times.

3. Choose a set of redundant event types that approx-
imate the desired task completion times and provide
redundancy (are at least some times non-problematic
when the primary event is problematic).

4. Obtain event times tik for task i and event type k (k =
1 represents the primary event and k 6= 1 represents re-
dundant events). Use the distribution of tik for each k
to identify problematic values4. Denote the identifica-
tion method as isProblematic(tik). isProblematic(tik)
should return the likelihood that the observed value tik
is incorrect.

5. For task i, obtain values of isProblematic(tik) for each
redundant observation type k.

6. Choose from the alternative observations via the fol-
lowing rule:

correct(ti) =

 arg(mink>1(isProblematic(tik))) if
isProblematic(ti1)

ti1 if !isProblematic(ti1)

(2)
Where the alternative k that has the lowest likelihood
of being inaccurate is chosen to represent the task com-
pletion time.

4. AN ILLUSTRATION USING MOZILLA
DATA

In this section we illustrate how to apply the approach de-
scribed in Section 3 to identify and correct problematic issue
fix events. We introduce Mozilla data used in this study in
Section 4.1. In Section 4.2 we investigate the error mecha-
nisms in Mozilla data, in particular, how the problems in the
data can be detected and what mechanisms cause these ab-
normalities. Based on that understanding, we describe how
we identify problematic issue fix dates of Mozilla in Sec-
tion 4.3 and how we correct such values in Section 4.4. We
investigate the extent of data redundancy in Section 4.6. We
compare the accuracy and the impact on model fit for uncor-
rected and corrected values in Section 4.5 and Section 4.7.

4For simplicity of description we talk about a single individ-
ual jik and omit the index jik from the discussion here.

Table 1: Quantiles of Productivity
10% 60% 70% 80% 90% 100%
1 1 2 2 3 209

4.1 Mozilla Data
Mozilla uses Bugzilla as the issue tracking system (ITS).

We use the official Bugzilla dump provided by the Mozilla
community (in January 2013) to conduct our analysis5. The
data includes 774809 issues reported to Mozilla from Septem-
ber 1994 to January 2013. It records all activities conducted
on these issues: from the time somebody reported an issue
until the time somebody closed it (it also may remain open
at the time when the Bugzilla dump was created). For each
issue a sequence of events take place: issue is created, as-
signed, submitted, tested, and resolved6. The issue may also
be reassigned, its attributes changed, comments, debugging
traces, etc. added. Each such event has an associate date,
time, the type of action, and the person performing the ac-
tion.

Mozilla uses Mercurial version control system (VCS) to
manage code. We cloned code bases of all products in Mozilla
community and gather all available code commits in Feb
2014. The extracted commit logs include the code commit-
ter, commit time, changed files and revision information of
every commit.

4.2 Investigation of Error Mechanism
In this section we discuss quantitative and qualitative ap-

proaches to discover the mechanisms by which erroneous
data can get introduced to answer RQ2. In particular, we
discuss how to determine if there may be a violation of pro-
ductivity bound. We also describe manual inspection of a
sample of problematic events to identify probable mecha-
nisms by which errors are introduced.

4.2.1 The Existence of Problematic Data
We use issue resolution events in Bugzilla to calculate in-

dividual’s productivity by counting the number of issues she
fixed each day. More specifically, we count the number of
events in which she changed the resolution of an issue to
FIXED.

Overall we obtain 145654 positive observations (each ob-
servation is a person-day, i.e., the number of issues fixed by
an individual in one of her days active in the project), and
Table 1 shows the quantiles of these counts. Based on the
assumption of physical constraints on individual’s produc-
tivity (an individual can only accomplish a certain amount
of tasks in a certain time unit, i.e., a day here), we are ex-
pecting a relatively low number of fixes per active day with
a median of 1 and 90-th percentile of 3 fixes per day. How-
ever, as shown in Table 2, the Bugzilla records an extremely
high number of fixes for some individual/day combinations,
suggesting there is a violation of the assumption of limited
productivity.

It is important to note that a large fraction of all issues are
fixed during these most-productive days. For example, the

5This Bugzilla dump provided by the Mozilla community
has a higher quality than other snapshots retrieved on-line
by people [30].
6Each “RESOLVED” issue has a resolution, e.g., FIXED,
DUPLICATE. As the name suggests, FIXED means that
the issue is fixed, DUPLICATE means that the reported
issue is a duplicate of another issue.
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Table 2: Exceptionally “Productive” Individuals
(Based on Issue Fix Events)

Date UserID count
2012-04-03 392439 209
2009-02-16 14534 165
2009-09-16 69426 148
2009-02-20 14534 148
2010-05-11 91159 110
2012-12-22 302720 108
2011-01-04 374575 106
2009-02-19 14534 103
2009-02-28 14534 100
2012-05-04 373476 99

top 1% of most productive person/days fixed 33549 issues,
counting for 12% of all the issues fixed.

We also calculate the number of person-days during each
month when one person fixes ten or more issues on a single
day. As the “Batch fixes” curve in Figure 1 shows, there is a
significant increase in the number of outliers in recent years.

The kinds of charts presented in this section can be used
to illustrate the extent of problems associated with any event
type. While in this section we consider issue resolution
events, in the later section we present the quality of last
comment events and last VCS commit events.

4.2.2 Experiment to identify causes of problematic
data

In this section we investigate issues where extremely high
numbers of fixes on a single day by a single individual are
recorded. Specifically, we sample 200 issues that are fixed in
top 20 most productive person-days shown in Table 2. We
manually check the comments of these issues and try to find
out the reasons why these individuals can achieve such high
productivity. According to our investigation, we find three
possible reasons for these outliers.

Development Process Tracked By Other System.
One possible reason for the outliers is that some issues

are tracked in other system. Specifically, in Mozilla, the
development process of many issues is tracked by an ag-
ile development system called Pivotal Tracker. When the
issue is marked as ACCEPTED in Pivotal Tracker, it indi-
cates the completion of fixing activities. At the same time,
a comment suggesting that the work on the issue has been
accepted is automatically created in Bugzilla, but the issue
status is not immediately changed. Instead, the issue sta-
tus in Bugzilla is changed manually to FIXED some time
after it is accepted in Pivotal Tracker. In this case, there
is no more work on the issue after the issue is accepted in
Pivotal Tracker. Therefore, the timestamp of the last com-
ment before the issue is marked as fixed in Bugzilla, i.e. the
timestamp of the comment created by Pivotal Tracker, is a
more accurate estimation of issue fix date.

On 2012-04-03, Bugzilla recorded that the person with ID
392439 fixed 209 issues. It turns out that most of these issues
are tracked by Pivotal Tracker and they have been accepted
in that system. The person (ID 392439) simply changed the
resolution of these resolved issues to FIXED. So the logins
and timestamps that mark the issues as fixed recorded in
the ITS system do not represent actual fixers or fix dates
for those issues.

Dormant issues.

Sometimes when an issue receives no attention for a long
time, Bugzilla administrators will decide to re-evaluate the
issue and, possibly, change the state to fixed. In this case,
the real working process stops at the time when the last
comment (before the issue is marked as fixed) is created.
Therefore, the timestamp of the last comment before the
issue is marked as fixed is a more accurate estimation of
issue fix date.

On 2009-02-16, Bugzilla recorded that the person with ID
14534 changed the resolution of 165 issues to FIXED. When
we check these issues, we find that these issues have not been
touched for years. This person was actually re-evaluating
the issues and changing the status to FIXED.

Closing issues with committed patches.
In some cases, a patch is first checked into the VCS and

the committer leaves a link in the associated issue of Bugzilla
pointing to this code commit. After that, someone (not the
committer) adds another comment noting the fact that the
issue was fixed (with the same link pointing to the code
commit) and then mark the issue as FIXED. In this case,
the timestamp of the prior to the last comment appears to
be closer to the real fix date.

On 2009-09-16, Bugzilla recorded that the person with ID
69426 marked 148 issues as FIXED. These issues are fixed
with a link pointing to a commit in the VCS. The patches
for these issues were first checked in, and later these issues
were marked as fixed with a link pointing to those patches.
Again, the logins and timestamps that are recorded to mark
the issues as fixed do not represent the actual fixer and fix
date for those issues.

In summary we found three mechanisms that led to in-
correct date or actor. In all of these cases, a better proxy
for task completion time appears to be the date of the last
comment or of the last code commit date associated with
the issue. Following the method described in Section 3, we
use the last comment as the alternative event to perform
correction described in the next sections.

4.3 Method to Identify Problematic Data
In this section we elaborate on implementing the problem-

atic data identification method introduced in Section 3 for
issue fix dates in Mozilla.

We model the number of issues fixed by an individual each
day using a mixed Poisson distribution. As discussed in Sec-
tion 3, the intensity of the task completion events may vary
depending on the task difficulty, therefore each day d would
produce a Poisson random variable with a different intensity
λd. Our observations, therefore, would represent a mixture
of Poisson random variables with different intensity param-
eters λd. Furthermore, we do not consider inactive days7,
obtaining a zero-truncated distribution. A commonly used
mixing distribution for the intensity of Poisson random vari-
ables is Gamma distribution. The resulting mixture distri-
bution is a zero-truncated negative binomial distribution.

We use R function ZANBI from package gamlss.dist to
match quantiles of the observed person/day fix counts to
the truncated negative binomial distribution and found that
parameters µ = 0.64 and σ = 1 (with ν = 1e − 7 to en-

7Many participants in open source project, such as Mozilla,
may not work full-time on the project and there are many
other tasks apart from fixing issues, so counting days with
zero fixes would also include days when the individual may
not have spent any effort on fixing issues.
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Figure 1: Batch-fix/batch-last-comment/batch-code-commit in each month

able zero-truncation) matched closely the 65-th and 85-th
quantiles (corresponding to counts of two and three, respec-
tively). Based on these parameters for the truncated neg-
ative binomial distribution, the probability of observing a
count of 10 or larger is less than 1e− 48. We, therefore, use
10 as the bound to determine physical productivity, i.e., we
consider all events, where an individual fixes more than 10
issues in one day, as problematic. Using this approach we
identify 36748 of 774809 observations as problematic.

4.4 The Choice of Redundant Observations for
Data Correction

Once the problematic data are identified, we try to answer
RQ3 by selecting redundant observations for issue fix dates.

The choice of redundant observations is based on the avail-
able data and on the investigations described in Sections 3
and 4.2. We found two types of events containing redun-
dant information related to the fix date: the last comment
and the last commit. Figure 1 shows the differences among
redundant observations. Note that the curves “Batch fixes”
and “Batch last comments” present the number of person-
days per month where a single developer is associated with
ten or more issue resolution and last-comment events, re-
spectively. “Batch commits” counts person-days with 160 or
more commits in VCS (see Section 6 for the identification of
problematic commits). Since we use the last commit date to
evaluate the performance of the correction technique (later
in Section4.5), here we only use the last comment as the re-
dundant event. The last comment event itself may be prob-
lematic as described in the method section. Table 3 sum-
marizes problematic values obtained for the last comment
events. We can observe that while it also has some clearly
problematic counts, only the top two person/day combina-
tions exceed 100, while nine such combinations exceed 100
in the issue fix events shown in Table 2. Whats more impor-
tant, none of the actors in the two tables overlap, suggest-
ing that problematic observations based on the resolution
change events ti1 do not always coincide with problematic

8We follow Johnson’s [16] recommendation to use a higher
p-value for statistical evidence instead of the commonly used
value of 0.05, because using the latter value often leads to
unreproducible results [30]. Here we use 1e− 4.

Table 3: Exceptionally “Productive” Individuals
(Based on Last Comment Events)

Date UserID count
2003-06-12 23402 320
2000-12 14534 165
1999-03-05 3819 83
2001-08-10 23402 76
1999-02-03 3853 75
2005-06-01 422 67
2003-06-20 23402 61
2002-01-25 15368 59
2012-07-10 404027 52
2000-03-30 12352 52

observations from the last comment event ti2. We, there-
fore, would expect that isProblematicti2 to be small for
cases when isProblematicti1 is high, thus providing reason-
able levels of redundancy. Based on the analysis described
in Section 4.3, the negative binomial distribution for the last
comment event has µ = 0.4 and σ = 1, with the probability
to observe the count of ten or more such events per person-
day being less than 1e− 5.

4.5 Evaluation of Accuracy
About 16% of the issues are fixed with a link pointing to

the commit in the VCS. The timestamp of the commit is
more likely to reflect the completion of the fix activities as
there are no subsequent modifications to the code in relation
to the specific fix. To answer RQ4, we evaluate the accu-
racy of corrected data by comparing the timestamp with
or without the proposed correction to the timestamp in the
VCS.

We apply our correction method on the issues that can
be linked to code commits and calculate quantiles of two
metrics to evaluate the accuracy of uncorrected data and
corrected data relative to timestamps in the VCS. We cal-
culate both absolute errors and relative errors of uncorrected
data and corrected data, where

absolute error = |timestamp− vcs timestamp|
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Table 4: Absolute Error

Quantile Uncorrected Corrected

0.50 0 days 07:17:13 0 days 01:08:17
0.75 1 days 00:16:33 0 days 11:03:00
0.80 1 days 08:52:50 0 days 21:21:03
0.90 5 days 21:59:42 4 days 12:40:42
0.99 75 days 03:43:39 72 days 11:18:15

Table 5: Relative Error

Quantile Uncorrected Corrected

0.50 0.020502 0.007296
0.75 0.210515 0.077663
0.80 0.369903 0.154409
0.90 1.650358 0.850241
0.99 148.281840 73.326035

and

relative error =
|timestamp− vcs timestamp|

vcs timestamp− issue creation time

Table 4 and 5 show that the corrected values have lower
relative or absolute errors (are about 50% more accurate)
than the uncorrected ones.

4.6 Investigation of Data Redundancies
Although we get a more accurate estimation of the task

completion time as discussed in Section 4.5, a better under-
standing of the redundant data is needed. In this section, we
investigate the extent of data redundancy to answer RQ5.

We use comment activities in Bugzilla to calculate indi-
vidual’s productivity by counting the number of last com-
ments she made (the number of comments she made that
are the last comment of an issue) each day. The number of
last comments per day per person, like the number of issues
fixed, should not exceed a certain level. We consider the last
comment date as problematic if the commenter made 10 or
more last comments per day.

Among the 230830 issues, 7887 issues (3.4%) are identified
to have problematic last comment dates. Among the 36748
issues whose fix dates are (identified as) problematic, 3587
(9.8%) have problematic last comments. The result shows
that the redundant observations are more likely to be prob-
lematic if the primary observations are problematic (Fisher
test p-val< 1e − 5). Despite that, they provide ample re-
dundancy with more than 90% observations not marked as
problematic when the primary events are problematic.

4.7 Impact on Model of Issue Resolution In-
terval

We further evaluate the approach by modeling time until
fix using corrected and uncorrected data. While we already
established that the errors cover a substantial portion of all
data and are relatively large, the statistical models tend to
be quite robust and may not change substantially even if
the data were to be corrected. If we observe substantial
differences in the model after data correction, this would
suggest a positive answer to RQ6.

We fit two models to conduct the evaluation. First, we
use a variety of predictors reported in the literature to ex-
plain the time until fix and report how the results change
after correction. Second, we replicate an existing study that
reported four predictors to be statistically significant.

The observations for the models are issues resolved with

the resolution FIXED and with their fix dates identified as
problematic by the approach described in Section 4.3. We
use this subset to focus on revealing the potential problems
resulting from uncorrected data. For all problematic issue
fix dates, the redundant observations, i.e. the timestamps
of the last comment, were available and were used in data
correction as shown in Equation 2 in Section 3. We also
remove issues created after 2012-04-28, as many of them
may still be open at the time Mozilla dump was created.
Finally we remove outlier issues that take more than one
year to fix. After these filters are applied, we have 24459
issues for the regression models.

Prior studies [9, 4, 15, 21] have used various issue report
attributes for predicting time until fix. Developer reputa-
tion, issue severity, number of assignees, attachments and
dependencies are used by Bhattacharya et al [4]. The num-
ber of comments is used by Hooimeijer et al [15]. Issue
priority, issue severity are used by Giger et al [9]. To repli-
cate previous work on predicting time until fix, we fit the
following multivariate linear regression model:

ln(days+ 1) ∼ severity + ln(attachments+ 1)

+reputation+ ln(assignee+ 1)

+ ln(depends+ 1) + priority + late

+ ln(comments+ 1) + resolver + last commenter (3)

The response variable is the natural logarithm of time
until fix measured in days. The predictors include:

severity: the issue severity recorded in Bugzilla. The is-
sue severity shows the impact of an issue with seven levels:
blocker, critical, major, normal, minor, trivial and enhance-
ment. More impactful issues are more likely to be resolved
sooner, so we expect that as severity decreases the issue
resolution time progressively increases as well, with larger
estimated coefficients.

attachments: the number of attachments associated with
the issue. More attachments may indicate a better docu-
mentation for the problem resulting in a shorter time until
fix.

depends: the number of other issues that the issue depends
on. If an issue depends on other issues, the processing of the
issue may be blocked until other issues are resolved. Such
blocking should increase the time until fix.

assignee: the number of assignee changes associated with
the issue. An increase in the number of assignee changes
should increase the issue-fix time, as observed in, e.g., [3].

priority: the issue priority recorded in Bugzilla. This met-
ric indicates the priority of the issue, including six levels: –
(unassigned), P1, P2, P3, P4 and P5. Higher priority should
be associated with shorter time until fix.

reputation: reputation of the reporter, which is defined
as:

reputation =
#issues fixed reported by the person

#issues reported by the person + 1
,

Issues reported by reputable people tend to take less time
to fix.

late: whether the issue is reported in the later period:

late =

{
1 if create date > 2010-09-27
0 otherwise

(4)

This variable is used to describe how issue-fix time may vary
over time.
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comments: the number of comments associated with the
issue. The number of comments reflects the attention that
the issue receives, which should affect the time until fix.
More comments may indicate complicated discussion or dif-
ficulty replicating the issue, resulting in longer time until
fix.

resolver: whether the reporter closed the issue herself.
The fact that the reporter resolved the issue herself may
indicate that she created the issue once she came up with a
fix. We expect such issues to take less time to fix as part of
the work may have occurred before the issue was reported.

last commenter: the author of the last comment before
the issue is marked as FIXED. This variable is used to ad-
just for the variations in practices (random effects) among
participants resolving the issue.

The values of predictors attachments, depends, assignee,
comments were highly skewed in our dataset, we therefore
take the natural logarithm of these predictors.

Table 6: Regression With Uncorrected Data
Estimate p− value

(Intercept) 4.91 0.00
critical 0.39 0.00
major 0.64 0.00

normal 0.80 0.00
minor 1.02 0.00
trivial 0.75 0.00

enhancement 1.23 0.00
ln(attachments+ 1) -0.16 0.00

ln(depends+ 1) 0.62 0.00
ln(assignee+ 1) 0.32 0.00

reputation -1.04 0.00
P1 -0.22 0.00
P2 0.08 0.11
P3 0.32 0.00
P4 0.52 0.00
P5 1.33 0.00

ln(comments+ 1) 0.54 0.00
resolver -0.22 0.00

late -0.72 0.00

Regression results are shown in Tables 6 and 7. The sec-
ond column shows the estimated coefficients for the predic-
tors and the third column shows the p-values. The values of
coefficients are the estimated effects that different predictors
have on the issue fix time measured by days. For example,
as shown in Table 7, the regression model predicts that a
decrease in the reputation by 50% from the median reputa-
tion of .58 will result in an increase of time until fix by 16%:
(exp(−0.52 ∗ .58 ∗ .5 + 0.52 ∗ .58) = 1.16) .

The positive coefficients for depends, assignee, comments,
the negative coefficients for reputation and resolver, and
the coefficients for different priority and severity levels match
our expectation of the model as discussed above.

Note that the negative coefficient for attachments sug-
gests that an increase in the number of attachments will
reduce the time until fix, supporting our hypothesis that
many attachments may make the issue easier to reproduce
and, therefore, to fix. Also, the severity coefficients are
more reasonably ordered for the corrected data than for the
uncorrected data, with the order blocker, critical, major,
normal, minor, trivial, and enhancement taking increas-
ingly longer times to resolve. For uncorrected data we see

Table 7: Regression With Corrected Data
Estimate p− value

(Intercept) -2.23 0.02
critical 0.28 0.01
major 0.43 0.00

normal 0.60 0.00
minor 0.75 0.00
trivial 0.75 0.00

enhancement 1.12 0.00
ln(attachments+ 1) -0.12 0.00

ln(depends+ 1) 0.41 0.00
ln(assignee+ 1) 0.45 0.00

reputation -0.52 0.00
P1 -0.09 0.05
P2 0.20 0.00
P3 0.43 0.00
P4 0.49 0.00
P5 0.85 0.00

ln(comments+ 1) 1.08 0.00
resolver -0.21 0.00

late -0.20 0.00

Table 9: Comparison of Statistical Significance
Predictor Original Uncorrected Corrected
Assignee Significant +/Significant +/Significant
Severity Significant +/Significant +/Significant
Depends Significant +/Significant +/Significant

Attachments Significant −/Significant +/Significant

trivial severity issues taking less time to resolve than minor
or normal severity issues: a questionable result.

We perform the diagnostics on the regression with cor-
rected data, and the quantile-quantile plot shown in Fig-
ure 2 suggests approximate normality of the residuals. The
residual plot (not provided for the lack of space) does not
indicate non-homogeneous variance.

The correction of data makes a substantial difference when
modeling the time until fix. After applying the correction,
the coefficients for four variables switch between being signif-
icant and not being significant (for p-value= 0.01), implying
that the correction of data changes the model substantially.
The adjusted R-square increases from 0.381 to 0.452, sug-
gesting the corrected model fits about 20% better than the
uncorrected one.

For comparison, Table 8 shows the published models of
time until fix that are replicated in this study. Only reputation
predictor becomes statistically significant in our model: the
findings for the remaining predictors are replicated. How-
ever, it’s difficult to replicate the studies that did not report
the effects of the predictors. The effects of attachements
and comments reported by [15] are in contrast to findings in
our model, perhaps because of different practices of projects
studied there.

To replicate the results on the same dataset, we use the
model presented in [4]. Predictors used in this model include
the number of assignees, issue severity, issue dependencies,
and the number of attachments. We fit the model with un-
corrected and corrected data with results shown in Table 9.
All four predictors are significant replicating the original re-
sults. However, the sign of the coefficient for attachments
(which were not reported in the original study) flip from neg-
ative to positive after applying our data correction method,
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Table 8: Prior Work on Time Until Fix

Paper Studied Projects Predictor Effect on time until fix Significance

[4] Chrome, Eclipse, Firefox assignee NA Yes
Seamonkey, Thunderbird severity NA Yes

attachments NA Yes
dependencies NA Yes
reputation NA Low correlation

[15] Firefox attachments + Yes
comments − Yes
severity Higher sev indicates shorter time Yes
reputation NA No

[21] Eclipse priority NA NA
severity NA NA
dependencies NA NA
comments NA NA

[9] Eclipse, Mozilla, Gnome priority NA Differ in projects
severity NA Differ in projects
comments NA Differ in projects

Figure 2: Quantile-quantile plot of regression residuals

indicating an opposite effect of this predictor. Furthermore,
the R-square increases from 0.02 to 0.11 after applying the
correction method, suggesting a much better fit of the cor-
rected data. Study by Hooimeijer et al. [15], however, shows
that the presence of attachments is correlated with a longer
time until fix.

5. LIMITATIONS
Our approach has a number of limitations. We discuss

issues related to the ability to apply our method, limitation
related to the identification of incorrect values, and other
potential issues.

General Method.
In this study we use physical constraints, e.g., individual

productivity bound, that exist in software development to
identify problematic values and to correct such values by
using redundant observations that are more likely to be cor-
rect. However, not all data may have such physical bounds,
or the analysts may not be aware of the bounds even if they
exist. As noted in the section describing the method, such
bounds may be estimable from the observations directly.
Furthermore, not all events may have redundant counter-
parts in operational data.

Method For Identifying Problematic Data.
We discussed the method of identifying problematic issue

fix dates in Section 4.3. However, the cut-off bound is set
based on the likelihood of observing problematic data. Al-
though this is good enough for identifying major outliers,
it may fail to detect minor outliers in our dataset. More-
over, a universal bound for all users in all periods of time
may not be optimal. Using a mixture model described in
Section 3 may help identify the bounds more precisely and,
potentially, suggest other distributions as being more appro-
priate than the truncated negative binomial distribution we
used. Besides, we only consider a single event type and a
single task: issue fix. Other tasks also require effort and may
be done by the same individual. Using that additional in-
formation may help further tighten the capacity constraints
resulting in an even more accurate identification of problem-
atic data.

Insights for Practice.
Despite the dramatic differences between the models trained

with corrected and uncorrected data, practical predictability
of the two models have not been tested. Further empirical
investigation is needed to fully assess the differences between
models trained with corrected/uncorrected data.
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Table 10: Exceptionally “Productive” Individuals
(Based on Code Commit Events)

Date UserID count
2013-03-21 Bobby Holley 1160
2013-08-22 Ms2ger 1029
2013-02-25 Gregory Szorc 1024
2014-01-27 B2G Bumper Bot 998
2012-08-04 Ms2ger 991
2013-07-24 Ms2ger 986
2013-01-08 ffxbld 981
2011-07-21 ffxbld 964
2013-08-06 ffxbld 945
2013-02-20 ffxbld 907

Finally, our method only corrects task completion time
after identifying problematic task completion time and indi-
viduals. A careful selection of redundant data is needed for
correcting problematic task completion individuals.

6. GENERALIZATIONS
In this section we investigate RQ7, in particular, we dis-

cuss how the method may apply to event streams other than
ITS event streams and how the redundant observations may
be chosen from an event stream associated with another sys-
tem.

If an individual performs a task that takes nonzero ef-
fort we can use an event corresponding to the time of task
completion recorded in operational data as a proxy. An arbi-
trary event (or a function calculating a metric from a single
or multiple events) recorded in operational data could be
chosen, with the best proxy depending on the type of task,
the practices of using tools, and the nature of the operational
data. For example, the issue reporting is also a task that
requires nontrivial effort. The task completion time in issue
reporting is the date when the issue is created (if we ignore
subsequent interactions with developers or triagers). We can
look at issue reporting event stream and determine problem-
atic values as well. The number of issues reported per day
per person, like the number of issues fixed, should not ex-
ceed a certain level. An extremely high number of issue
reports may indicate that the reported issues were imported
from other ITS and, therefore, the recorded reporters and
recorded timestamps may be unreliable. In Mozilla com-
munity, based on this constraint, we count the number of
issues reported by each user on each day, and the ten most
productive person-days are shown in Table 11.

While we argued that the last commit date better rep-
resents issue fix completion, it is also not free from prob-
lems. In particular, we count the number of code commits
by each person on each day and present the results in Ta-
ble 10. It shows that code commit data from VCS also
violates the capacity constraints. The truncated negative
binomial distribution with parameters µ = 10 and σ = 2
matches the observed quantiles of the commit date reason-
ably well. In Figure 1 we used the daily commit count of 160
as a cutoff representing tail probability of less than 1e − 4
for Batchcommits.

The identification of problematic issue report data and
code commit data show that the approach may indeed be
generalizable to other types of events and tasks. Note, how-
ever, that the alternative ways to identify problematic data
should also be employed. For example, many of top com-
mit/days are associated with login ffxbld (FireFox Build).

Table 11: Exceptionally “Productive” Individuals
(Based on Issue Report Events)

Date UserID count
2012-10-1 452624 542
1999-11-22 4415 277
2011-6-24 12809 116
2009-12-16 24572 110
2012-1-27 148348 93
2012-10-12 384312 90
2011-12-14 24572 87
2010-10-13 164048 87
2012-6-1 24572 86
2000-7-8 41 86

Clearly, this administrative login does not make all these
commits manually. These are likely to be mostly script-
generated commits that should be identified prior to apply-
ing our data correction approach. In summary, based on the
capacity constraint, we identify likely incorrect data for four
types of events: the issue report, last comment, issue fix,
and code commit.

7. CONCLUSIONS
Operational data may not always accurately reflect the

phenomena of interest, thus misleading research, wasting
developers’ effort and time, and causing quality problems
in software development. In this study we proposed an
approach to identify and correct problematic event data
based on the individual capacity constraints and redundan-
cies present in operational data, and used Mozilla ITS and
VCS to illustrate how the approach could be applied in prac-
tice. In particular, we found that batch-fixing is a common
mechanism for erroneous data, and we used alternative ob-
servations of the last comment posted for an issue to correct
the issue resolution dates. By comparing corrected and un-
corrected values to the last commit date in the VCS, we
found corrected values to be 50% more accurate. We repli-
cated the model commonly found in the literature to pre-
dict time until fix and found both its structure and the fit
to change substantially after data correction. We identified
likely incorrect observations for other types of events, e.g., is-
sue reports and code commits to illustrate how the approach
could be generalized. It is important to note that capacity
constraints are not the only constraints that exist in software
development. It may be possible to exploit other constraints
to identify and correct problematic data and, through that,
to improve effectiveness of software development.

Detailed references, all data sets and more information
may be found at: https://passion-lab.org/projects/dataquality
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